The parameterized space complexity of model-checking bounded variable first-order logic
نویسندگان
چکیده
The parameterized model-checking problem for a class of first-order sentences (queries) asks to decide whether a given sentence from the class holds true in a given relational structure (database); the parameter is the length of the sentence. In 1995 Vardi observed a polynomial time algorithm deciding the model-checking problem for queries with a bounded number of variables. We study its parameterized space complexity. For each bound on the quantifier alternation rank the problem becomes complete for the corresponding level of what we call the tree hierarchy, a hierarchy of parameterized complexity classes defined via space bounded alternating machines between parameterized logarithmic space and fixedparameter tractable time. We observe that a parameterized logarithmic space model-checker for existential bounded variable queries would allow to improve Savitch’s classical simulation of nondeterministic logarithmic space in deterministic space O(log). Further, we define a highly space efficient model-checker for queries with a bounded number of variables and bounded quantifier alternation rank. We study its optimality under the assumption that Savitch’s theorem is optimal.
منابع مشابه
Bounded Variable Logic, Parameterized Logarithmic Space, and Savitch's Theorem
We study the parameterized space complexity of model-checking first-order logic with a bounded number of variables. By restricting the number of the quantifier alternations we obtain problems complete for a natural hierarchy between parameterized logarithmic space and FPT. We call this hierarchy the tree hierarchy, provide a machine characterization, and link it to the recently introduced class...
متن کاملFixed-Parameter Tractability, Definability, and Model-Checking
In this article, we study parameterized complexity theory from the perspective of logic, or more specifically, descriptive complexity theory. We propose to consider parameterized model-checking problems for various fragments of first-order logic as generic parameterized problems and show how this approach can be useful in studying both fixed-parameter tractability and intractability. For exampl...
متن کاملTree-Width for First Order Formulae
We introduce tree-width for first order formulae φ, fotw(φ). We show that computing fotw is fixed-parameter tractable with parameter fotw. Moreover, we show that on classes of formulae of bounded fotw, model checking is fixed parameter tractable, with parameter the length of the formula. This is done by translating a formula φ with fotw(φ) < k into a formula of the k-variable fragment L of firs...
متن کاملParameterized Complexity of First-Order Logic
We show that if C is a class of graphs which is nowhere dense then rst-order model-checking is xed-parameter tractable on C. As all graph classes which exclude a xed minor, or are of bounded local tree-width or locally exclude a minor are nowhere dense, this generalises algorithmic meta-theorems obtained for these classes in the past (see [11, 13, 4]). Conversely, if C is not nowhere dense and ...
متن کاملThe Parameterized Complexity of k-Edge Induced Subgraphs
We prove that finding a k-edge induced subgraph is fixedparameter tractable, thereby answering an open problem of Leizhen Cai [2]. Our algorithm is based on several combinatorial observations, Gauss’ famous Eureka theorem [1], and a generalization of the wellknown fpt-algorithm for the model-checking problem for first-order logic on graphs with locally bounded tree-width due to Frick and Grohe ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1703.01860 شماره
صفحات -
تاریخ انتشار 2017